首页> 外文OA文献 >Reverse Engineering Feature Models with Evolutionary Algorithms: An Exploratory Study
【2h】

Reverse Engineering Feature Models with Evolutionary Algorithms: An Exploratory Study

机译:带有进化算法的逆向工程特征模型的探索性研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Successful software evolves, more and more commonly, froma single system to a set of system variants tailored to meet the similiarand yet di erent functionality required by the distinct clients andusers. Software Product Line Engineering (SPLE) is a software developmentparadigm that has proven e ective for coping with this scenario. Atthe core of SPLE is variability modeling which employs Feature Models(FMs) as the de facto standard to represent the combinations of featuresthat distinguish the systems variants. Reverse engineering FMs consist inconstructing a feature model from a set of products descriptions. This researcharea is becoming increasingly active within the SPLE community,where the problem has been addressed with di erent perspectives andapproaches ranging from analysis of con guration scripts, use of propositionallogic or natural language techniques, to ad hoc algorithms. Inthis paper, we explore the feasibility of using Evolutionary Algorithms(EAs) to synthesize FMs from the feature sets that describe the systemvariants. We analyzed 59 representative case studies of di erent characteristicsand complexity. Our exploratory study found that FMs thatdenote proper supersets of the desired feature sets can be obtained with asmall number of generations. However, reducing the di erences betweenthese two sets with an e ective and scalable tness function remains anopen question.We believe that this work is a rst step towards leveragingthe extensive wealth of Search-Based Software Engineering techniques toaddress this and other variability management challenges.
机译:成功的软件越来越多地从单个系统演变成一组系统变体,这些变体旨在满足不同客户和用户所需的类似但又不同的功能。软件产品线工程(SPLE)是一种软件开发范例,已被证明可有效应对这种情况。 SPLE的核心是可变性建模,它采用特征模型(FM)作为事实上的标准来表示区分系统变量的特征组合。逆向工程FM包括根据一组产品描述来构建功能模型。这个研究领域在SPLE社区中变得越来越活跃,在该问题中,已经使用了不同的观点和方法来解决该问题,从配置脚本的分析,命题逻辑或自然语言技术的使用到临时算法。在本文中,我们探讨了使用进化算法(EA)从描述系统变量的特征集中合成FM的可行性。我们分析了59个具有不同特征和复杂性的代表性案例研究。我们的探索性研究发现,可以通过少量的代数获得表示所需特征集的适当超集的FM。但是,如何通过有效和可扩展的功能来减少这两个集合之间的差异仍然是一个悬而未决的问题。我们认为,这项工作是迈向利用大量基于搜索的软件工程技术来应对这一挑战和其他可变性管理挑战的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号